Higher bifurcations for polynomial skew products

نویسندگان

چکیده

<p style='text-indent:20px;'>We continue our investigation of the parameter space families polynomial skew products. Assuming that base has a Julia set not totally disconnected and is neither Chebyshev nor power map, we prove that, near any bifurcation parameter, one can find parameters where <inline-formula><tex-math id="M1">\begin{document}$ k $\end{document}</tex-math></inline-formula> critical points bifurcate <i>independently</i>, with id="M2">\begin{document}$ up to dimension space. This striking difference respect one-dimensional case. The proof based on variant inclination lemma, applied postcritical at Misiurewicz parameter. By means an analytical criterion for non-vanishing self-intersections current, deduce equality supports current measure such families. Combined results by Dujardin Taflin, this also implies support in these non-empty interior. As part construct, families, subfamilies codimension 1 locus non empty provides new independent existence holomorphic arbitrarily large whose Finally, it shows Hausdorff maximal point its support.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcations in Families of Polynomial Skew Products Matthieu Astorg and Fabrizio Bianchi

We initiate a parametric study of families of polynomial skew products, i.e., polynomial endomorphisms of C of the form F (z, w) = (p(z), q(z, w)) that extend to endomorphisms of P(C). Our aim is to study and give a precise characterization of the bifurcation current and the bifurcation locus of such a family. As an application, we precisely describe the geometry of the bifurcation current near...

متن کامل

On constant products of elements in skew polynomial rings

Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...

متن کامل

A Dichotomy for Fatou Components of Polynomial Skew Products

We consider polynomial maps of the form f(z,w) = (p(z), q(z,w)) that extend as holomorphic maps of CP. Mattias Jonsson introduces in “Dynamics of polynomial skew products on C2” [Math. Ann., 314(3): 403– 447, 1999] a notion of connectedness for such polynomial skew products that is analogous to connectivity for the Julia set of a polynomial map in one-variable. We prove the following dichotomy:...

متن کامل

on constant products of elements in skew polynomial rings

let $r$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $r$ and $f(x)=a_0+a_1x+cdots+a_nx^n$ be a nonzero skew polynomial in $r[x;alpha]$. it is proved that if there exists a nonzero skew polynomial $g(x)=b_0+b_1x+cdots+b_mx^m$ in $r[x;alpha]$ such that $g(x)f(x)=c$ is a constant in $r$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $r$ such tha...

متن کامل

Nilpotent Elements in Skew Polynomial Rings

 Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Modern Dynamics

سال: 2022

ISSN: ['1930-5311', '1930-532X']

DOI: https://doi.org/10.3934/jmd.2022003